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We observe breathing front dynamics which select three distinct types of bistable patterns in the 2:1 reso-
nance regime of the periodically forced oscillatory Belousov-Zhabotinsky reaction. We measure the curvature-
driven shrinking of a circular domainR, t1/2 at forcing frequencies below a specific value, and show that the
fast time scale front oscillations(breathing) drive this slow time scale shrinking. Above a specific frequency,
we observe fronts of higher curvature grow instead of shrink and labyrinth patterns form. Just below the
transition frequency is a relatively narrow range of frequencies where the curvature-driven coarsening is
balanced by a competing front interaction, which leads to a pattern of localized structures. The length scale of
the localized structure and labyrinth patterns is set by the front interactions.
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I. INTRODUCTION

Bistability, the property that a system has two equally
likely solutions, is found in equilibrium systems such as co-
polymers[1] and metal-ion clusters[2]; and in nonequilib-
rium systems such as driven circuits[3], semiconductors[4],
lasers[5], and some chemical reactions[6–8]. In extended
systems, bistability can cause pattern formation, i.e., differ-
ent spatial arrangements of the two stable states. While the
resulting pattern in equilibrium systems can often be under-
stood in terms of minimizing a free energy, nonequilibrium
systems are not driven by this principle.

We investigate how the front dynamics select patterns in
the forced nonequilibrium Belousov-Zhabotinsky(BZ)
chemical reaction. We periodically force the light-sensitive
BZ reaction, with spatially homogeneous pulses of light,
over a range of frequencies that lock in the 2:1 resonance
regime of the forcing. The chemical concentration oscillates
exactly once for every two forcing cycles and there are two
stable (p-shifted) oscillating states[8,9]. We examine the
slow time scale pattern evolution, i.e., on a time scale much
longer than the chemical oscillation period, of the forced BZ
system at high forcing strengths.

The BZ chemical reaction has been widely used to inves-
tigate mechanisms of pattern formation in nonequilibrium
reaction diffusion systems. Resonances of the quasi-2D os-
cillatory BZ reaction with a periodic external forcing have
been studied previously[6–14]. The propagation of excita-
tion waves has also been studied in the context of the BZ
reaction [15,16]. These previous works have found that
fronts of different curvature propagate into the unexcited
state at different velocities; a positive curvature front propa-
gates more slowly and a negative curvature front more
quickly. This is captured by the well known eikonal equation
[17–19]

V = V0 − Dk, s1d

whereV is the velocity normal to the front,Vo is the velocity
of a flat front,D is a diffusion coefficient, andk is the front
curvature.

We observe that the slow front dynamics of the patterns in
the high forcing strength regime of 2:1 resonance select ei-
ther a stationary flat front separating spatially uniform do-
mains ofp-shifted oscillations, localized structures, or laby-
rinth patterns[8,9] depending on parameter values(see Fig.
1).

The forced complex Ginzburg-Landau(FCGL) equation
is a generic amplitude equation for oscillatory systems near a
Hopf bifurcation. Our experimental observations for the rates
of pattern evolution and the pattern wavelengths selected are
in agreement with results from the FCGL equation[20].
Even though our BZ experiments are conducted far from the
Hopf bifurcation, the FCGL has predicted many results ob-
served in the forced BZ system[10,11,21].

These patterns and the transitions between them have also
been found in a resonant optical system[5] and in the am-
plitude equations which describe it[22]. Our experiments
test the theoretical predictions in a different type of system, a
chemically reactive system, and demonstrate the generality
of these coarsening mechanisms. Furthermore, we describe
the mechanism of the pattern formation in terms of the
small-amplitude, fast oscillations(breathing motion) of the
front propagation direction.

The organization of the rest of this paper is as follows.
The physical setup and data analysis methods are described
in Sec. II. The experimental results showing curvature-driven
shrinking are presented in Sec. III A. The observation of lo-
calized structures is discussed in Sec. III B and labyrinths are
discussed in Sec. III C. We develop a physical explanation of
these mechanisms based on the chemical reaction and the
two-dimensional(2D) geometry in Sec. IV.

II. METHODS

A. Experimental setup

We use the same BZ reactor setup as in[8,9,14]. The
reaction takes place in a thin porous Vycor glass membrane
sandwiched between two chemical reservoirs. The glass
membrane is 0.4 mm thick and 22 mm in diameter. Reagents
diffuse homogeneously from the continuously stirred reser-
voirs into the glass through its two faces. The pattern wave-*Electronic address: alin@phy.duke.edu
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length isù0.5 mm while the membrane is 0.4 mm thick, so
the pattern is quasi-two-dimensional. Each 8.3 mL volume
reservoir is continuously refreshed at a flow rate of 20 mL
per hour. The two reservoirs(delineated A and B) contain
0.8M sulfuric acid(A,B), 0.184M potassium bromate(A,B),
0.001M tris(2, 28-bipyridyl)dichlororuthenium(II )hexa-
hydrate(A), 0.22M malonic acid(B), and 0.2M sodium bro-
mide (B). Under these conditions, the reaction is oscillatory
and we observe rotating spiral waves of Ru(II ) concentration
in the membrane.

We image the spiral waves by passing spatially homoge-
neous low-intensity light through the membrane, and mea-
sure the relative intensity of the transmitted light using a
CCD camera bandpass filtered at 451 nm. Regions of the
glass membrane that contain Ru(II ) absorb light at 451 nm;
regions of high intensity have a lower concentration of
Ru(II ).

B. Resonant forcing

The ruthenium catalyst of the BZ chemical reaction is
light-sensitive[23]. To periodically force the system, we ap-
ply time periodic spatially uniform pulses of light to the
membrane. The particular effects of light using the same re-
actor setup we use here have been described previously[14].

We apply the parametric forcing using a commercial
video projector(Sanyo PLC-750M) and a condensing lens.
The video projector is computer controlled using a video
card with a refresh rate of at least 0.1s. We temporally force
the system, alternately projecting spatially homogeneous
high-intensity and low-intensity light onto the membrane
with a square wave time dependence.

C. Initial conditions

To test the predicted rate of curvature-driven coarsening,
see Sec. III A, we measure the growth rate of circular pat-
terns in the bistable 2:1 resonance regime. To create the ini-
tial pattern for this experiment, we project a radially sym-
metric pattern onto the membrane at a 1:1 resonance
frequency. The chemical pattern responds with a radially

symmetric pattern. After five forcing cycles, the circular
chemical pattern is stable. We then spatially homogenize the
light intensity and simultaneously change the forcing fre-
quency so that it is in the 2:1 resonance regime. We create a
2:1 resonant pattern of concentric circles as shown in Fig. 2.

D. Data analysis

We determine the frequency of the chemical oscillations
and show that the system is stably 2:1 locked using the pat-
tern’s temporal power spectrum. We calculate the power
spectrum at each pixel in the image and average to determine
the average power of the pattern. We consider the reaction
2:1 resonant with the forcing if the fundamental peak in the
power spectrum is within one percent of half the forcing
frequency.

The images shown in this paper were converted from
snapshots of ruthenium concentration to a representation of
the oscillation phases. This representation contains informa-
tion for a complete oscillation cycle, i.e., it does not resolve
the dynamics within a cycle. The chemical concentration os-
cillates exactly once for every two forcing cycles, resulting

FIG. 1. Examples of(a) large domain,(b) localized structures, and(c) labyrinth patterns in the 2:1 resonant regime of the periodically
forced BZ reaction. The forcing frequency,v, increases from left to right. The pattern on the far left will eventually evolve into a single flat
front. The small domains in(b) are stationary while larger domains continue to shrink. The labyrinth in(c) is stationary. Chemical conditions
are given in Sec. II A. Image sizes are(a) 11.4 mm311.4 mm,(b) 12.7 mm312.7 mm, and(c) 9.3 mm39.3 mm.

FIG. 2. Example image of the chemical response to a radially
symmetric forcing pattern. The pattern oscillates at half the forcing
frequency(2:1 resonance). Black and white regions are oscillating
p out of phase from each other. The image size is 7.6 mm
37.6 mm. The chemical conditions are given in Sec. II A.
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in two stable(p-shifted) oscillating states. Each pixel in an
image is assigned to one of the two phase states. This re-
moves information about the front width.

We use the magnitude of the oscillations to measure the
front width. The front is the region where the local oscilla-
tion magnitude is changing, while magnitude is roughly uni-
form within a domain, see Fig. 3(b).

We match the location of the fronts from the magnitude
data Fig. 3(b) with the domain boundaries from the phase
data Fig. 3(a) to create the final images Fig. 3(c) shown in
subsequent figures of this paper. Figure 3(c) is created by
taking the pixel-by-pixel product of the phase and magnitude
and applying a threshold to eliminate the variation of the
magnitude in the interior of a domain. The final image has
only phase information in the interior of the domains and
magnitude information along the fronts. Thus, the width of a
front is approximated from Fig. 3(b). The images we show in
the following sections are obtained in the same way as Fig.
3(c).

III. DOMAIN COARSENING AND DOMAIN GROWTH

As we scan from low to high forcing frequencyv in the
2:1 resonance regime, we observe a transition from patterns
coarsening, which includes both large domain and localized
structure patterns, to growth of labyrinth patterns[9,10]. The
transition occurs at a specific valuevT. Coarsening patterns
form belowvT and labyrinth patterns form abovevT in the
2:1 resonance regime.

As we scan back and forth in frequency, we measure that
this transition does occur at a specific frequency, within the
millihertz resolution of our experiments. However, the value
of vT is sensitive to experimental parameters we cannot con-
trol, such as membrane age, therefore it is not meaningful for
us to report a value forvT. On a given day, we observe a
value ofvT±0.3 mHz.

In the following subsections, we discuss the pattern selec-
tion in these different regimes.

A. Coarsening regime

Gomila et al. [20] examined the evolution of circular do-
mains in numerical simulations of the FCGL amplitude equa-
tion. Simulations with forcing amplitudes above a critical

value showed that a circular domain of one phase surrounded
by p-shifted oscillations shrinks according to

Rstd = ÎRs0d2 − Dt, s2d

whereR is the radius of a circular phase domain andD is the
diffusion coefficient[20]. In the simulations, circular regions
shrink whenD.0 and grow whenD,0; high curvature
regions shrink more rapidly than low curvature ones accord-
ing to Eq.(2).

In the 2:1 resonant regime belowvT, we impose a radially
symmetric initial condition in our experiments, see Sec. II C,
and measure the radiusR as a function of time. The sequence
of snapshots in Fig. 4 shows an example of a circular domain
shrinking. The minimum root-mean-square difference be-
tween a fit of logfRg versus logfRs0dn−Dtg occurs for the fit
when n=2 for circular patterns and the slope of the fit is
0.52±0.04, demonstrating Eq.(2) is obeyed in the BZ sys-
tem.

A quadratic fit oft versusR2 for 23 measurements over a
wide range of forcing strengths and forcing frequencies gives
an average measure of the chemical diffusion coefficient. We
obtain a value ofD=2.2±0.2310−5 cm2/s, which does not
depend on the forcing parameters, and changes sign discon-
tinuously at vT. This is in contrast to the FCGL results,
where the value ofD in Eq. (2) depends on the forcing pa-
rameters and goes smoothly through zero at the critical
value. Additionally, this shrinking disk experiment provides
a new technique to measureD in Vycor or other porous
material, yielding a more precise value, which fits within
previously reported estimates[24].

This curvature-driven front dynamics is also observed for
arbitrarily shaped domains. Figure 5 shows that the local
curvature kstd changes according to Eq.(2) with Rstd
=1/kstd. The domains become locally more circular, and
eventually vanish. The pattern in the last frame of Fig. 5 is
still evolving. Asymptotically, it will be a single phase do-
main, or a pattern with stationary flat fronts separating phase
domains.

To quantify the coarsening, we define the functionPsr ,td
as the probability that two points a distancer apart are inside
the same phase domain at timet. Psr ,td is calculated using
the following formula:

Psr,td =
1

mn
o

i
o

j

Usi, j ;tddsl i j − rd, s3d

wherei, j are pixel indices for an image,m is the total pixel
number,n is the number of pixels a radiusr away from i,
Usi , j ; td=1 for i, j in the same domain at timet, Usi , j ; td
=0 for i, j in different domains,l i j is the distance between the
points indexed byi and j , andd is the Dirac delta function.
Therefore,Ps0,td=1.

The shape of the curvePsrd for fixed t (see Fig. 6) cap-
tures the front roughness, i.e., how quicklyPsrd tends to zero
depends on the probability that points are near the edge of a
domain. This is more likely for domains with rough fronts.
The average domain size is defined as the distanceL such
that PsL ,td=1/2. That is, pixelsL away from an arbitrary
pixel i have an equal probability of being inside or outside

FIG. 3. Determination of domain boundaries for a 2:1 resonant
pattern.(a) The phase and(b) the magnitude of each oscillation
cycle were determined.(c) A combination of(a) and(b). The phase
defines the interior of a domain and the magnitude defines the do-
main boundaries. The chemical conditions are given in Sec. II A.
Image size: 11.4 mm311.4 mm.
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the same domain asi. To capture the front roughness relative
to the average domain size,L, we rescaler by L. Figure 6
showsPsr ,td at various times for the data shown in Fig. 5.
Rescalingr by the average domain size shows that the self-
similar dynamics are independent of the pattern length scale.
The inset of Fig. 6 shows that the average domain size de-
pends linearly ont1/2.

B. Localized structures

In our experiments, shrinking spots vanish for all forcing
frequencies belowvT in the bistable 2:1 resonant regime,
except over a narrow rangev&vT, approximately 224
mHz. In this regime, the asymptotic pattern is stable spots
with radii of roughly 1 to 1.5 times the width of a front. The
radius of these localized structures is approximately
0.34±0.07 mm, while the width of a front is 0.26±0.03 mm.
Evolution of localized structures is shown in Fig. 7, and has
been reported previously in[5,20]. While localized structures
have been observed in the 2:1 resonance of the forced BZ
system before[8], the fact that they are observed only in a
narrow forcing frequency range and that they form via the
coarsening mechanism has yet to be reported.

Localized structures have been reported for parameter
values near the transition to labyrinths in amplitude equa-
tions [20,25], which have shown that the tails of the fronts
have a repulsive interaction that acts against the curvature-
driven mechanism at short range. This is consistent with our
observation that the shrinking of domains stops when the
fronts come close to each other.

Other stable patterns in this regime include a target pat-
tern, where a localized structure exists at the center, sur-
rounded by a ring with a width equal to the localized struc-
ture diameter. A similar pattern might have two or more
localized structures at the center.

C. Labyrinths

Whenv is tuned abovevT, we observe a transition from
domain coarsening to domain growth and tip splitting in re-
gions of high curvature. The snapshots in Fig. 8 show the
time evolution of a labyrinth pattern. We are unable to mea-
sure the growth rate of these domains, due to the transverse
instability of fronts in this regime[10]. In experiments re-
ported here, measurement is also hindered by breakup of the
uniform oscillations(nucleation mechanism) [10] within a
domain. This instability of spatially uniform oscillations can

be seen in the first frame of Fig. 8. Although we cannot
measure the rate, we do observe that domains grow in this
parameter regime. Our experimental observations are in
agreement with numerical studies of the FCGL equation,
where curvature-driven growth[20] was found forD,0 in
Eq. (2) whenv is abovevT.

The front interaction which stabilizes localized structures
also stabilizes the labyrinth patterns. In experiments, the
labyrinth tips repel each other when they get close. This
growth-limiting mechanism sets a characteristic wavelength,
approximately 0.67 mm in our experiments. This is also the
diameter of the observed localized structures.

IV. DISCUSSION

To gain insight into the underlying physics of the coars-
ening mechanism in the periodically forced BZ system, we
consider two descriptions. The first description is purely geo-
metric, requiring only that the area covered by each half of a
front breathing cycle is proportional to the length of the
front. The second description is from a kinematic point of
view, using Eq.(1).

The chemical kinetics of the BZ system is strongly excit-
able in the parameter regime in which we conduct experi-
ments. Thus, in the absence of perturbations, the system
would be in a stable, time-independent state. However, the
strong excitability of the kinetics in conjunction with the
spatial extent of the real system(which contains sources of
noise, e.g., from boundaries) results in continuous self-
sustained relaxation oscillations. Thus, the system we study
is both oscillatory, in the sense that it is autonomously time-
periodic, and excitable, in the sense that part of the periodic
cycle is in a true refractory period, during which perturba-
tions decay exponentially.

The geometric argument we pose first invokes both the
oscillatory and diffusive nature of the bistable system, as
well as the excitable nature of the chemical reaction. First,
we discuss the features of excitability relevant to curvature-
driven front dynamics, then we discuss the interplay of the
excitability, diffusion, oscillations, and geometry.

An excitable process(chemical reaction) is the interplay
of two agents, an activator and an inhibitor. Examples of
excitable behavior include action potentials in nerve cells,

FIG. 4. Curvature-driven shrinking of a circular domain demon-
strates thet1/2 law, see text. Snapshots are evenly spaced in time at
t=0, 821, 1641, and 2462 s. The domain vanishes att=2513 s.
Chemical conditions are the same as in Fig. 1. Image size is
3.2 mm33.2 mm.

FIG. 5. The time evolution of a pattern coarsening atv
=0.039 Hz.t=0, 461, and 1640 s. High curvature fronts coarsen
more rapidly. As a domain becomes smaller, the curvature increases
and eventually the domain vanishes. The asymptotic pattern will
contain either a single phase or flat fronts, and will take several
hours to reach. Chemical conditions given in Sec II A. Image size is
11.4 mm311.4 mm.
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the beating of the heart, combustion processes, and the BZ
chemical reaction. In the BZ reaction, the activator bromous
acid enhances its own production. This autocatalytic process
causes a rapid increase in activator concentration. The exci-
tation process is inhibited by free bromide ion concentration
[24].

To describe the fast oscillations of the front dynamics, we
treat diffusion and reaction independently. In particular, we
consider the direction of diffusion but not the magnitude.
Figure 9 shows, for the special case of a 2D flat front, the
activator species diffusing from high to low concentration,
which occurs over a time intervalt0 to t1. Framet2 shows the
start of the second half of the cycle. Temporal oscillations of
the activator and inhibitor concentrations cause a reversal of
the location of excited and nonexcited domains. Note, the
position of the front(solid line) remains the same fromt1 to
t2 since we are considering the diffusion and reaction sepa-
rately. The diffusion then occurs in the opposite direction
and, as indicated by the dashed line, the front returns to its
original location. The cycle is complete when the reaction
oscillation returns the activator concentration to the original
levels shown in framet0. The flat front of the activator spe-
cies diffuses into the unexcited region traveling a distanceDx
and covering an area equal to the length of the front times
Dx. In contrast, a curved 2D front will not return to the same
position, as we will describe next.

In the coarsening regime, during one cycle of the pattern
oscillation a circular domain expands and then contracts. The

change in area of a circle expanding or contracting is simply
the circumference timesDx. During expansion, the total in-
crease in area isDA=2pr0Dx, wherer0 is the initial radius,
before expansion. The radius after expansion is

r1/2 =ÎA0 + DA

p
= Îr0

2 + 2r0Dx, s4d

wherer1/2 is the radius of the circle after one half oscillation.
Note that r1/2 is less thanr0+Dx. This geometric picture
indicates that the change in the radius during expansion is
less thanDx.

During the second half of the oscillation, the front con-
tracts. The decrease in area of the circle is now 2pr1/2Dx and
the radius after one full cycle,r1, is

FIG. 6. Left: The probability functionPsr ,td for timest=0, 308,
974, and 1282 s(*, 3, h, and¹, respectively). Right: Scaling each
probability function by the average domain sizeL demonstrates that
the dynamics are independent of length scale.

FIG. 7. Snapshots show the time evolution of a pattern as it
coarsens to localized structures.t=0, 379, and 1344 s. The small
circular domains in the last frame are stable. Their radius is
0.34±0.07 mm. The domains in these images larger than the local-
ized structure size continue to shrink. Chemical conditions are
given in Sec II A. Image size is 12.7 mm312.7 mm.

FIG. 8. Time evolution of a labyrinth pattern,t=0, 290, and
1032 s. The growth of a labyrinth occurs along fronts with high
curvature. The labyrinth pattern in the final frame does not change
qualitatively in time. Chemical conditions are given in Sec. II A.
Image size is 9.3 mm39.3 mm.

FIG. 9. In one breathing cycle, a 1D front returns to its original
position after traveling a distanceDx in each direction.
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r1 = Îr0
2 + 2r0Dx − 2DxÎr0

2 + 2r0Dx. s5d

Thus during contraction, the radius changes by an amount
more thanDx, i.e., more than it grew during expansion.
Hence, over one cycle the total domain size shrinks.

Additionally, we derive the relationship betweenDx and
the parameterD from Sec. III A, which shows that the short
time scale breathing,Dx, drives the longer time scale coars-
ening. The change in the radius for a given cycle,Dr =r1
−r0, is

Dr = Îr0
2 + 2r0Dx − 2DxÎr0

2 + 2r0Dx − r0. s6d

If r0. .Dx, then expanding the square roots yields
Dr =−Dx2/ r is the change inr during one oscillation. To
consider the period averaged behavior, we divide each side
by the period of oscillation and consider the left-hand side to
be differentials instead of finite differences,

dr

dt
=

Dx2

rT
, s7d

whereT is the period of oscillation. When we integrate this
equation, we recoverR=ÎRs0d2−Dt with D=2Dx2/T.

Depending on the duration of the refractory part of the
cycle, the breathing of a curved front can cause a circular
domain to either shrink or grow(Secs. III A and III C).
When the observed refractory time is short, shrinking occurs.
The diffusion of the activator excites the nonexcited state,
which causes the excited domain to expand. In contrast,
when the refractory time is longer, the activator diffuses into
the nonexcited region without causing excitation. Conse-
quently, r1 is greater thanDx after one cycle and domains
grow.

A kinematic approach[Eq. (1)] captures the breathing
motion of fronts as an excitation wave moving into an unex-
cited region. Oscillations in the excited(white) domains be-
come unexcited(black) after half a pattern cycle, causing the
front velocity to switch direction. For a curved front,k is
positive when domains expand and negative when domains
contract.

The two stages of breathing are

V =
dr

dt
= V0 ±

1

r
D. s8d

Solving Eq.(8) shows that the change inr while contracting
is greater than the change inr while expanding by the
amount 2Dt / r0, where t is the amount of time for each
expansion and contraction. For a single cycle, expansion and
contraction occur for one-quarter of the oscillation period
each. This is because the domain is expanding for 1/2 the
cycle and contracting for the other 1/2, except when the forc-
ing light, which acts as an inhibitor, is on. Thus,t=T/4, and
Dr, the total change in radius over one cycle of the pattern, is
Dr =−DT/2r.

From this relation comes

dr

dt
=

− D

2r
, s9d

which is equivalent to Eq.(7) whenD=2Dx2/T. Thus, these
two descriptions are consistent with both the experimental
data and each other.

ACKNOWLEDGMENTS

We thank Linda Smolka for useful discussions, and
we acknowledge support from Oak Ridge Associated
Universities and NSF Grant DMR-0348910.

[1] L. Leibler, Macromolecules13, 1602(1980).
[2] R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novack, Na-

ture (London) 365, 141 (1993).
[3] R. Bascones, J. Garcia-Ojalvo, and J. M. Sancho, Phys. Rev. E

65, 061108(2002).
[4] M. Meixner, P. Rodin, E. Scholl, and A. Wacker, Eur. Phys. J.

B 13, 157 (2000).
[5] V.B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev.

Lett. 81, 2236(1998).
[6] V. K. Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R.

Epstein, Nature(London) 406, 389 (2000).
[7] A. Hagberg and E. Meron, Phys. Rev. Lett.78, 1166(1997).
[8] V. Petrov, Q. Ouyang, and H. L. Swinney, Nature(London)

388, 655 (1997).
[9] A. L. Lin, M. Bertram, K. Martinez, H. L. Swinney, A. Arde-

lea, and G. F. Carey, Phys. Rev. Lett.84, 4240(2000).
[10] A. Yochelis, A. Hagberg, E. Meron, A. L. Lin, and H. L.

Swinney, SIAM J. Appl. Dyn. Syst.1, 236 (2002).
[11] A. L. Lin, A. Hagberg, A. Ardelea, M. Bertram, H. L. Swin-

ney, and E. Meron, Phys. Rev. E62, 3790(2000).
[12] M. Markus, G. Kloss, and I. Kusch, Nature(London) 371, 402

(1994).

[13] V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, Phys. Rev.
Lett. 86, 552 (2001).

[14] K. Martinez, A. L. Lin, R. Kharrazian, X. Sailer, and H. L.
Swinney, Physica D168, 1 (2002).

[15] P. Foerster, S. Muller, and B. Hess, Science241, 685 (1988).
[16] P. Brazhniket al., Chaos, Solitons Fractals10, 99 (1999).
[17] J. J. Tyson and J. P. Keener, Physica D32, 327 (1988).
[18] P. K. Brazhnik and J. J. Tyson, Phys. Rev. E59, 3920(1999).
[19] A. S.Mikhailov and V. S. Zykov, Physica D52, 379 (1991).
[20] D. Gomila, P. Colet, G.-L. Oppo, and M. San Miguel, Phys.

Rev. Lett. 87, 194101(2001).
[21] B. Marts, A. Hagberg, E. Meron, and A. L. Lin, Phys. Rev.

Lett. 93, 108305(2004).
[22] R. Gallego, M. San Miguel, and R. Toral, Phys. Rev. E61,

2241 (2000).
[23] S. Kadar, T. Amemiya, and K. Showalter, J. Phys. Chem. A

101, 8200(1997).
[24] A. Belmonte, Q. Ouyang, and J.-M. Flesselles, J. Phys. II7,

1425 (1997).
[25] V. J. Sanchez-Morcillo and K. Staliunas, Phys. Rev. E60,

6153 (1999).

MARTS, MARTINEZ, AND LIN PHYSICAL REVIEW E 70, 056223(2004)

056223-6


